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Abstract
We present an investigation into the existence and origins of bandgap bowing in
compound-semiconductor common-cation ternary alloys. As examples, we consider
CdSex Te1−x and ZnSe1−x Tex alloys. A calculation, based on the sp3s∗ tight-binding method
including spin–orbit coupling within the framework of the virtual crystal approximation, is
employed to determine the bandgap energy, local density of states and atomic charge states
versus composition and valence-band offset. The results show that (i) in the valence band, the
top states are mainly contributed by Te atoms. The degree of ionicity of all atoms is found to
vary linearly with mole fraction x . (ii) There is a strong competition between the anions (Se and
Te) in trapping/losing charges and this competition is the main reason for the bandgap bowing
character. (iii) There is a reasonable agreement between the calculated results and the available
photoluminescence data. (iv) The bowing parameter is found to increase with increasing
valence-band offset and increasing lattice mismatch.

1. Introduction

In the last two decades, II–VI semiconductor ternary and
quaternary alloys have attracted a lot of attention because
of their potential use in optoelectronic devices operating in
the visible spectral range [1]. In particular, Zn(Cd)Se(Te)
alloys have been the subject of many investigations for
several reasons: (i) they possess a range of direct bandgaps
covering most of the visible spectrum from near-infrared to
ultraviolet [2]; (ii) they are characterized by bright emissions;
(iii) lattice constants of ZnSe and CdSe match those of GaAs
and InAs, respectively, which are popularly used as substrates;
(iv) ZnSe is commonly used as a buffer on GaAs because it
has a direct and large bandgap lying within the blue spectral
region [3, 4]. The achievement of p-doping of ZnSe in 1991
raised further interest in it.

However, despite decades of extensive studies, there is no
commonly accepted explanation of the origin of the widely
observed nonlinear dependence of the fundamental bandgap
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with the alloy composition. The composition dependence of
the bandgap is usually described by a second-order polynomial
with the quadratic term proportional to the so-called bowing
parameter [5]. In one treatment of this subject, it is argued
that the bowing parameter can be decomposed into three parts
originating from charge exchange, volume deformation, and
structural relaxation [6]. But in this theory, it is also assumed
that a single bowing parameter can describe the bandgap
behavior in the whole composition range. This assumption
is based upon the validity of the virtual crystal approximation
(VCA). But, in the case of highly mismatched alloys, such as
IIIV1−x Nx materials, the N-induced bandgap reduction and the
greatly reduced pressure dependence of the bandgap in these
alloys significantly deviate from the VCA-based predictions.
It has been demonstrated that the composition dependence
of the bandgap for these alloys cannot be described using a
single bowing parameter. A band-anticrossing model has been
developed to explain these unusual effects [7].

On the computational side, different methods have been
used in the calculation of the electronic band structures of
alloys. However, many were limited either by the system
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size and the applicability only for ground-state properties
(with underestimation of bandgap energy), such as the first-
principles methods, or the complete neglect of the band-mixing
effects, such as the Hückel method and the effective-mass
approach (based on the Kronig–Penney model). To overcome
such difficulties, we have used the sp3s∗ tight-binding (TB)
method with inclusion of spin–orbit interactions [8, 9], which
are important for the case of II–VI materials like those
presented in this work. The TB method has shown its
reliability in successfully simulating the experimental data
while incorporating the microscopic description of the material
by including the point-group symmetry of the system. Within
the Slater–Koster scheme [9], the TB method uses a small basis
set of atomic orbitals and this gives the method the ability to
deal with large systems; meanwhile, it takes into account the
band-mixing effects that are essential in the band structure of
systems such as alloys.

Traditionally, and because of its simplicity, the VCA is
usually preferred for the treatment of chemical disorder in
semiconductor alloys. In the VCA, the potential of each atom
in the alloy is replaced by a weighted average of the potentials
of its components. It does lead to a qualitative explanation
of most of the features in the bandgap bowing of the alloy.
Unfortunately, in systems where large atomic relaxations and
reconstructions take place, the VCA vastly underestimates the
bowing of the bandgap.

In another related investigation, Garcı́a and co-workers
[10] have shown in their TB calculations on the Zn1−yCdy

Se1−xTex and Zn1−yCdyS1−x Sex quaternary alloys that the
bandgap energy possesses a bowing character when the mole
fraction of anions (x) is varied and, on the other hand, it
follows an almost linear variation when the composition of
cations (y) is varied. Similar bowing and linear behaviors
were also reported in the experimental work of Seong and co-
workers [11] on the common-cation and common-anion II–
VI ZnTe-based alloys. These behaviors were corroborated
in the theoretical simulations of El-Haj Hassan and co-
workers [12] using the density-functional theory (DFT) and
Charifi and co-workers [13] using the linearized-augmented
plane wave (LAPW) method. Nonetheless, the origin of
bandgap bowing is still an open question. In the present
work, we use the tight-binding method with the inclusion of
spin–orbit coupling [14] to investigate the existence and the
origin of the bowing behavior in two cases of common-cation
ternary alloys (CdSex Te1−x and ZnSe1−x Tex ). The calculated
results of bandgap energies are also fitted to the available
photoluminescence (PL) data.

This paper is organized as follows. The next section
gives some details of the TB models and method. In
section 3 we discuss our calculated results and compare them
to experimental data. The last section (section 4) summarizes
our main findings and conclusions.

2. Computational method

Within the TB framework, atomic levels and electronic-
interaction integrals are taken as adjustable parameters in
order to fit the experimental or the first-principles band

Table 1. The variation of bowing parameter ‘b’ with lattice
mismatch (�a/a0) and VBO in the studied alloys.

Alloy �a/a0 VBO (eV) b (eV)

CdSeTe 6.8% 0.57a 0.904b, 0.916c

ZnSeTe 7.3% 0.73a 2.185b, 1.413d, 1.239e, 1.285f

a Reference [17]. b Present work. c Reference [19].
d Reference [11]. e Reference [21]. f Reference [22].

structures. Vögl et al [15] have proposed a nearest-neighbor
TB description of IV and III–V semiconductors using the sp3s∗
basis set. In their work, the actual Hamiltonian is replaced
with a pseudo-Hamiltonian which involves five orbitals per
atom: s and 3p orbitals to describe the sp3 hybridization
and one excited s∗ orbital, whose function is to provide a
better description of the lowest unoccupied energy levels (low-
lying conduction bands (CBs)). The first extension to further
incorporate the spin–orbit coupling within the TB framework
was done for II–VI semiconductors, even prior to Vögl’s work,
by Kobayashi et al [8], namely on CdTe and HgTe. In
these materials, the spin–orbit splitting is quite strong and its
successful incorporation into the TB Hamiltonian has paved
the way for a large field of applications, especially in the area
of II–VI semiconductors.

Moreover, in the supercell calculations the validity of two
main points is assumed: (i) the virtual crystal approximation
(VCA) in evaluating the supercell atomic structure and (ii) the
problem of energy reference between the alloy constituents
is sorted out by taking the valence-band offset (VBO) into
account within the scheme of VCA [16]. For instance,
the valence-band edge of CdTe stands higher in energy
than the one of CdSe when an interface is formed between
these two materials [17] such as the case of a free-standing
heterostructure (i.e. VBO = Ev(CdTe) − Ev(CdSe) � 0).
Consistent with this and with the VCA principle to take an
average potential, in the case of CdSex Te1−x alloy, each Te
atom is bonded to four Cd atoms. Thus, all the Te on-site
energy elements should be shifted by a VBO value. However,
each Cd atom is four-fold coordinated with the x fraction to be
Se and the (1 − x) fraction to be Te. So, the Cd on-site energy
elements should be shifted by (1 − x) × VBO with respect to
the bulk values. The VBO values were originally calculated
by Wei and Zunger [17] using the first-principles all-electron
band-structure method and are listed among the data presented
in table 1.

In the present work, we use the empirical TB parameters of
Olguı́n and Baquero [14], which yield excellent fittings to the
experimental bandgap energies and carrier effective masses.
The TB Hamiltonian matrix elements are expressed in a basis
of symmetrically orthonormalized atomic orbitals |a, μ, Ri〉
(the so-called Löwdin orbitals [9]), where Ri denotes a Bravais
lattice point referring to the primitive cell, a is a basis atom in
the primitive cell and μ denotes an orbital (such as |s, 1

2 〉 as
an eigenstate of the total-angular momentum J = L + S) on
atom a. The Hamiltonian is usually expressed [8] in terms
of a basis |a, μ, k〉, which is obtained via a discrete Fourier
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transformation of the localized orbitals |a, μ, Ri〉, and given by

|a, μ, k〉 = 1

Nw

∑

j

eik·Rj |a, μ, Rj〉 (1)

where k is a wavevector, usually taken either from within the
irreducible wedge (IW) of the Brillouin zone if the aim is to
calculate the density of states, or along the high-symmetry lines
if the aim is to calculate the bands; Nw is the number of k-
vectors taken from within the IW.

With the inclusion of the spin–orbit interaction, the sp3s∗-
TB Hamiltonian is expressed in the Löwdin basis set (denoted
below as |i, μ〉 ≡ |a, μ, Ri〉 for simplicity) as follows:

H =
∑

i,μ

|i, μ〉Ei,μ〈i, μ|+
∑

i,μ; j,ν(i �= j)

| j, ν〉Uiμ, jνei�k(�r j −�ri )〈i, μ|
(2)

where i and j refer to atoms at the respective positions �ri and
�r j ; μ and ν refer to one of the ten orbitals on the atom i and
j , respectively; Ei,μ is an on-site (diagonal) energy element
of orbital μ for site i ; Uiμ, jν is the overlap integral between
the indicated respective orbitals. For further details of the
expressions for the overlap integrals, we refer the reader to [8].
The TB parameters are obtained from [14].

The Bloch wavefunction |n, k〉, of course, should
diagonalize the TB Hamiltonian and is written as

H |n, k〉 = Enk|n, k〉 (3)

where n is a band index; Enk is the eigen-energy corresponding
to the eigen-vector (Bloch wavefunction). In our particular
case of ternary alloys, both constituents possess direct
bandgaps at the �-point. So, except for band structure or
density of states calculations, the bandgap energy (Eg) is
calculated only at the �-point.

The obtained eigen-energies Enk and corresponding
eigen-functions |n, k〉 are used to calculate the following
quantities:

(i) the total density of states (TDOS) given by

N(E) = 1

Nw

Nw∑

n,k

δ(E − Enk) (4)

(ii) the local density of states (LDOS), due to the orbital μ on
the atom a, given by

Na,μ(E) = 1

Nw

Nw∑

n,k

|〈a, μ, Ri|n, k〉|2δ(E − Enk) (5)

(iii) the partial density of states (PDOS), due to the atomic
species of type α (such as Cd, Se or Te atoms), given by

Nα(E) =
∑

a,μ

Na,μ(E) (6)

where the sum a runs over all sites of type α.
We emphasize that the k-space integration carried in

evaluating equations (4) and (5), is performed using the

Monkhorst–Pack technique [18], and the δ-function is
numerically approximated by a Gaussian:

δ(x) = 1

σ
√

2π
exp

[
− x2

2σ 2

]
(7)

of width σ = 0.10 eV to smear out the effects of finite
size and consequently the discreteness of the Brillouin
zone sampling and experimentally to take account of the
thermal broadening. All the TDOSs are normalized to ten
electrons (i.e. one atom).

(iv) The PDOSs are used to calculate the electric charge of
individual atoms as follows:

qα = 2e

ρ

∫ EF

Emin

Nα(E) dE (8)

where e is the electron charge; 2 stands for the re-
normalization of density over a molecule rather than an
atom; ρ is the atomic mole fraction (for instance in the
case of CdSex Te1−x alloy, ρ = 1, x or (1 − x) for Cd,
Se or Te, respectively); Emin is any energy value below all
state levels forming the TDOS; EF is Fermi energy which
is taken to be equal to Eg/2 as a frozen lattice state is
assumed (T = 0 K).

3. Results and discussions

3.1. FCC bulk DOS

Figure 1 displays the calculated density of states for bulk (a)
CdTe and (b) CdSe in their equilibrium face-centered cubic
(FCC) crystal structures. The calculation uses the sp3s∗ TB
basis set with spin–orbit interactions, whose parameters are
from [14]. The valence-band edge (Ev) and the conduction-
band edge (Ec) are indicated by the two vertical dashed lines.
The VB edge is taken as the energy reference (i.e. Ev = 0).
Each side of figure 1 shows the TDOS and PDOSs due to
contributions from the constituent atoms. The bandgaps of
both of these materials are direct at the BZ center (�-point) and
their respective values are 1.60 and 1.78 eV at the frozen lattice
state (0 K). As is well known, the bonds in both CdTe and
CdSe are covalent with partial ionic character. For instance,
by looking at the PDOSs, one can easily notice that the VB of
the anion (like Te in figure 1(a) or Se in figure 1(b)) is much
larger than the VB of the cation (like Cd in both figures 1(a)
and (b)). In contrast, the conduction band (CB) of the cation
is larger than that of the anion. Furthermore, the electronic
charge of the Te VB, being a bit smaller than the one for
Se, reveals the fact that Se is more electro-negative than Te
(performing the integration of PDOS up to EF yields 5.726 (e
units) for the Te atom and 6.146 (e units) for the Se atom).
One therefore expects that such mismatch in electro-negativity
of anions would play a role in the bandgap bowing of alloys.

3.2. Ternary alloy DOS

Figure 2 displays the calculated DOSs for CdSex Te1−x ternary
alloys with (a) x = 0.25, (b) x = 0.50 and (c) x = 0.75.
The pair of dashed vertical lines refer to the VB and CB edges
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Figure 1. The total and partial density of states (TDOS and PDOS) calculated for zinc-blende structures of (a) CdTe and (b) CdSe.
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Figure 2. The TDOS and PDOS calculated for the common-cation CdSex Te1−x ternary alloys with (a) x = 0.25, (b) x = 0.50 and
(c) x = 0.75.

(i.e. Ev and Ec, respectively). As in figure 1, the VB edge is
taken as an energy reference (i.e. Ev = 0). In each part, we
show TDOS in the upper panel and the PDOS contributions
from Cd, Te, and Se as one moves lower in the consecutive
panels. All DOSs are displayed for the energy range [−6,
+6] eV in order to focus on the VB and CB states near the
bandgap. First, in figure 2(a), one can notice a very interesting
feature in the PDOS of Se atoms: the Se VB states are
pushed down in energy away from the VB edge, as being more
competitive than Te in accommodating more electrons. Since
Se is more electro-negative, its corresponding VB states have
a tendency to lie lower in energy than those associated with Te
VB states. Consequently, the VB edge consists predominantly
of states located on Te atoms. Second, in the same figure 2(a),
one can also notice, through the PDOS, that Cd atoms are

the largest contributors to the CB of the alloy. Consequently,
the CB edge consists predominantly of states located on Cd
atoms. Qualitatively, these features are persistent in the other
two panels 2(b) and (c) when the Se mole fraction is increased.

The total charge of each individual atom is calculated
by integrating the PDOSs up to the Fermi level, as described
earlier, and the results are summarized in figure 3. One can
notice that the charges of both Te and Se are varying around 6
while the charge of Cd varies around 2. This is consistent with
the fact that the alloy constituent elements are from groups
II and VI. More importantly, one can easily notice that the
degree of ionicity of all the atoms increases linearly with Se
density (x). The way in which the charge behaviors alter the
bandgap bowing could be explained as follows. In the pure
bulk states (x = 0 or 1) Se is more electro-negative than Te
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Figure 3. The calculated electric charges for the constituent atoms of
the CdSex Te1−x ternary alloy versus mole fraction x .

and this is the cause of formation of a VBO 	 0.5 eV, with the
VB edge of CdTe being higher than that of ZnTe. However,
in the alloy state, the Se and Te are found to have comparable
charges and compete to accumulate more charges (for instance,
the charge of Te is even slightly higher than Se in the alloy
state 0.25 � x � 0.5 in figure 3). Such competition builds
up a compromise in the charge confinements to accumulate
on either Cd–Se or Cd–Te bonds and results in the bandgap
bowing character of the alloys.

3.3. Modeling of experimental data

For the CdSexTe1−x ternary alloys, Campo and co-workers
reported an experimental work [19] in which they made a
clear comparison between their results of cathodoluminescence
(CL) and photoluminescence (PL) for CdSeTe films grown
on Si substrates using molecular-beam epitaxy (MBE). The
Se mole fraction in their samples was determined by x-ray
rocking-curve diffraction, wavelength-dispersive spectroscopy,
and Rutherford back-scattering spectroscopy. These authors
reported that the bandgaps (Eg) varied parabolically with
composition as evidence of the bowing behavior in these
alloys. Their PL data are shown in figure 4(a) as solid circles

whereas CL data are open triangles. It should be emphasized
that these measurements were done at room temperature (RT 	
300 K), where the bandgap energy should be smaller than the
frozen lattice case [20]. For this reason, in our theoretical
modeling, we have made a minor change in one of the TB
parameters (Ec

s ) to yield the proper RT bulk bandgap energies
(e.g. Eg(CdTe) is lowered by 80 meV and Eg(CdSe) is lowered
by 40 meV). For the CdSex Te1−x alloys, the calculations are
carried out for x = 0.25, 0.5, and 0.75 and the results are
shown by open squares. We have performed a nonlinear
fitting to both the experimental and theoretical data using the
parabolic function

Eg = x ECdSe
g + (1 − x)ECdTe

g − bx(1 − x) (9)

where b is the bowing parameter. The results for Eg and b
are summarized in table 1. For the PL data, we found that
b = 0.916 eV while for the TB calculations we found that
b = 0.904 eV. This excellent agreement made our claim valid
while we recall that the calculations still rely on the validity of
the VCA.

For the ZnSe1−xTex ternary alloys, Seong and co-
workers [11] reported wavelength-modulated reflectivity and
Raman characterization of single crystals grown by the vertical
gradient freezing technique. The PL measurements were
done at low temperatures (8 K) and the results are shown
on figure 4(b) by solid triangles. At higher temperatures
(room temperature, ‘RT’), on the other hand, Chang and co-
workers [21] reported investigations of a set of II–VI ternary
alloys, among which they studied the ZnSe1−x Tex alloys. The
latter alloys were grown using MBE on GaAs substrates and
were characterized using PL, CL, and high-resolution x-ray
diffraction measurements. The bowing character was well
observed in their data, which is displayed in figure 4(b) by
open circles. In another related experimental work, reported
by Wu and co-workers [22], the ZnSe1−x Tex alloys were grown
by MBE and characterized using photomodulated reflectivity,
optical absorption, and PL spectroscopies at RT. Their data [22]
also represented further evidence for bandgap bowing in these
alloys and are shown as solid circles in figure 4(b). The bowing
character has also been corroborated by the TB calculations,
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Figure 4. The variation of Eg with composition for (a) CdSex Te1−x and (b) ZnSe1−x Tex ternary alloys. The photoluminescence data PL1,
PL2, PL3, and PL4 correspond to [19], [11], [21], and [22] respectively, while CL is due to [19].
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the results of which are shown in figure 4(b) by solid squares.
All the curves in figure 4(b) display parabolic fitting to the
corresponding experimental and theoretical data. Comparing
the data presented in figure 4(b), one may make the following
remarks: (i) the experimental bowing parameter is a bit
higher at low temperatures [11]; (ii) the bowing parameters
at RT of the experimental works of [21] and [22] are in
excellent agreement; (iii) the TB bowing parameter, calculated
to simulate the RT data, was found to be large. Although
the TB bandgaps are smaller than the experimental ones, they
represent the highest possible estimates that one can obtain
by varying the VBO. They correspond to an overestimate of
VBO of 1.2 eV. The TB results yield an overestimated bowing
parameter b, but it is still smaller than what was reported
in [10]. Possible reasons for such over-estimation could be
the following: (1) lack of exact TB parametrization in the
case of alloys away from the dilute regime; (2) deviation from
the VCA, which is more pronounced in the case of the mid-
alloy regime; (3) neglect of exciton effects in the TB scheme.
Beyond these, the TB calculation is still capable of predicting
the experimental bandgap bowing in ZnSe1−x Tex alloys and to
closely estimate their bandgaps in the dilute regime.

Table 1 summarizes the results of lattice mismatch
(�a/a0), VBO, and bowing parameter (b) for the studied
ternary alloys. One can observe that bandgap bowing exists
in the common-cation ternary alloys and increases with the
increase of VBO and lattice mismatch.

4. Conclusions

The electronic band structures of the common-cation
CdSex Te1−x and ZnSe1−x Tex ternary alloys were investigated
using the sp3s∗ tight-binding method with the inclusion of
spin–orbit coupling. In agreement with the experimental data,
the bandgap energy is shown to have a bowing behavior as a
function of composition. The bowing parameter is found to
increase with VBO and lattice mismatch.

In the alloy state, the anions (Se and Te) are found to
compete in trapping charges. Such competition builds up a
compromise in the charge distribution among the alloy bonds

and should be the main reason for the observed bandgap
bowing character.

Acknowledgment

The authors are indebted to Dr Najeh Jisrawi for several fruitful
discussions.

References

[1] For a review, see for instance Kolodziejski L A, Gunshor R L
and Nurmikko A V 1995 Annu. Rev. Mater. Sci. 25 711

[2] Trager-Cowan C, Parbrook P J, Henderson B and
O’Donnell K P 1992 Semicond. Sci. Technol. 7 536

[3] Taniguchi S et al 1996 Electron. Lett. 32 552
[4] Nakamura S et al 1997 Appl. Phys. Lett. 70 1417
[5] Van Vechten J A and Bergstresser T K 1970 Phys. Rev. B

1 3351
[6] Bernard J E and Zunger A 1987 Phys. Rev. B 36 3199
[7] Shan W, Walukiewicz W, Ager J W, Haller E E, Geisz J F,

Friedman D J, Olson J M and Kurtz S R 1999 Phys. Rev.
Lett. 82 1221

[8] Kobayashi A, Sankey O F and Dow J D 1982 Phys. Rev. B
25 6367

[9] Tit N and Al-Zarouni A 2002 J. Phys.: Condens. Matter
14 7835

[10] Garcı́a A E, Camacho A, Navarro H, Olguı́n D and
Baquero R 2000 Rev. Mex. Fis. 46 249

[11] Seong M J, Alawadhi H, Miotkowski I, Ramdas A K and
Miotkowska S 1999 Solid State Commun. 112 329

[12] El-Haj Hassan F, Hashemifar S J and Akbarzadeh H 2006
Phys. Rev. B 73 195202

[13] Charifi Z et al 2005 J. Phys.: Condens. Matter 17 7077
[14] Olguı́n D and Baquero R 1995 Phys. Rev. B 51 16891
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